博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
hadoop2 作业执行过程之yarn调度执行
阅读量:6255 次
发布时间:2019-06-22

本文共 17002 字,大约阅读时间需要 56 分钟。


YARN是hadoop系统上的资源统一管理平台,其主要作用是实现集群资源的统一管理和调度(目前还不完善,只支持粗粒度的CPU和内存的的调配);

它的基本思想是将Mapreduce的jobtracker拆分成两个独立的服务:一个全局的资源管理器ResourceManager和每个应用程序特有的ApplicationMaster。其中ResourceManager负责整个系统资源的管理和分配,而ApplicationMaster则负责单个应用程序的管理;

YARN上的应用按其运行的生命周期的长短分为长应用和短应用。

  1.短应用通常是分析作业,作业从提交到完成,所耗时间是有限的,作业完成后,其占用的资源就会被释放,归还给YARN再次分配

  2.长应用通常是一些服务,启动后除非意外或人为终止,将一直运行下去。长应用通常长期占用集群上的一些资源,且运行期间对资源的需求也时常变化。

YARN在2.2.0版本以后增强了对长应用的支持。


用户向YARN提交一个应用程序后,YARN将分为两个阶段运行改应用程序:第一个阶段是启动ApplicationMaster;第二个阶段是由ApplicationMaster创建应用程序,为它申请资源,并监控它的整个运行过程,直到运行成功。

YARN的工作流程可以分为以下几个步骤:

  1.用户向YARN提交应用程序,其中包括ApplicationMaster程序、启动ApplicationMaster的命令、用户程序等;

  2.ResourceManager为该应用程序分配第一个Container,并与对应的NodeManager通信,要求它在整个Container中启动应用程序的ApplicationMaster;

  3ApplicationMaster首先向ResourceManager注册,这样用户可以直接通过ResourceManager查看应用程序的运行状态,然后它将为各个任务申请资源,并监控它的运行状态,直到运行结束,即重复步骤4~7;

  4.ApplicationMaster采用轮询的方式通过RPC协议向ResourceManager申请和领取资源;

  5.一旦ApplicationMaster申请到资源后,则与对应的NodeManager通信,要求其启动任务;

  6.NodeManager为任务设置好运行环境(包括环境变量、jar包、二进制程序等)后,将任务启动命令写到一个脚本中,并通过运行该脚本启动任务;

  7.各个任务通过某RPC协议向ApplicationMaster汇报自己的状态和进度,以让ApplicationMaster随时掌握各个任务的运行状态,从而可以在任务失败时重新启动任务。

    在应用程序运行过程中,用户可以随时通过RPC向ApplicationMaster查询应用程序的当前运行状态;

  8.应用程序运行完成后,ApplicationMaster向ResourceManager注销并关闭自己。

 

 


在单机程序设计中,为了快速处理一个大的数据集,通常采用多线程并行编程,大体流程如下:先有操作系统启动一个主线程,由它负责数据气氛、任务分配、子线程启动和销毁等工作,而各个子线程只负责计算自己的数据,当所有子线程处理完数据后,主线程再退出;

类比理解,YARN上的应用程序运行过程与之非常相近,只不过它是集群上的分布式并行编程。可以将YARN看做一个云操作系统,它负责为应用程序启动ApplicationMaster(相当于主线程),然后再由ApplicationMaster负责数据气氛、任务分配、启动和监控等工作,而由ApplicationMaster启动其他各个Node的Task(相当于子线程)仅负责计算任务,当所有任务计算完成后,ApplicationMaster认为应用程序运行完成,然后退出。

 


YARN上协议层面的通信动作

上图涉及三个RPC协议:

  • ApplicationClientProtocol: Client-RM之间的协议,主要用于应用的提交;

  • ApplicationMasterProtocol: AM-RM之间的协议,AM通过该协议向RM注册并申请资源;

  • ContainerManagementProtocol: AM-NM之间的协议,AM通过该协议控制NM启动容器。


YARN上程序层面的调用动作

可以看出,客户端的主要作用就是应用的提交和监控应用运行。


程序跟踪

从 的

JobSubmitter.java status = submitClient.submitJob( jobId, submitJobDir.toString(), job.getCredentials());

接起

1   @Override 2   public JobStatus submitJob(JobID jobId, String jobSubmitDir, Credentials ts) 3   throws IOException, InterruptedException { 4      5     addHistoryToken(ts); 6      7     // Construct necessary information to start the MR AM 8     ApplicationSubmissionContext appContext = 9       createApplicationSubmissionContext(conf, jobSubmitDir, ts);10 11     // Submit to ResourceManager12     try {13       ApplicationId applicationId =14           resMgrDelegate.submitApplication(appContext);15 16       ApplicationReport appMaster = resMgrDelegate17           .getApplicationReport(applicationId);18       String diagnostics =19           (appMaster == null ?20               "application report is null" : appMaster.getDiagnostics());21       if (appMaster == null22           || appMaster.getYarnApplicationState() == YarnApplicationState.FAILED23           || appMaster.getYarnApplicationState() == YarnApplicationState.KILLED) {24         throw new IOException("Failed to run job : " +25             diagnostics);26       }27       return clientCache.getClient(jobId).getJobStatus(jobId);28     } catch (YarnException e) {29       throw new IOException(e);30     }31   }

其中最重要的语句之一就是

ApplicationSubmissionContext appContext =      createApplicationSubmissionContext(conf, jobSubmitDir, ts);

读注释可知它用于启动AppMaster前构造必要的信息

1   public ApplicationSubmissionContext createApplicationSubmissionContext(  2       Configuration jobConf,  3       String jobSubmitDir, Credentials ts) throws IOException {  4     ApplicationId applicationId = resMgrDelegate.getApplicationId();  5   6     // Setup resource requirements  7     Resource capability = recordFactory.newRecordInstance(Resource.class);  8     capability.setMemory(  9         conf.getInt( 10             MRJobConfig.MR_AM_VMEM_MB, MRJobConfig.DEFAULT_MR_AM_VMEM_MB 11             ) 12         ); 13     capability.setVirtualCores( 14         conf.getInt( 15             MRJobConfig.MR_AM_CPU_VCORES, MRJobConfig.DEFAULT_MR_AM_CPU_VCORES 16             ) 17         ); 18     LOG.debug("AppMaster capability = " + capability); 19  20     // Setup LocalResources 21     Map
localResources = 22 new HashMap
(); 23 24 Path jobConfPath = new Path(jobSubmitDir, MRJobConfig.JOB_CONF_FILE); 25 26 URL yarnUrlForJobSubmitDir = ConverterUtils 27 .getYarnUrlFromPath(defaultFileContext.getDefaultFileSystem() 28 .resolvePath( 29 defaultFileContext.makeQualified(new Path(jobSubmitDir)))); 30 LOG.debug("Creating setup context, jobSubmitDir url is " 31 + yarnUrlForJobSubmitDir); 32 33 localResources.put(MRJobConfig.JOB_CONF_FILE, 34 createApplicationResource(defaultFileContext, 35 jobConfPath, LocalResourceType.FILE)); 36 if (jobConf.get(MRJobConfig.JAR) != null) { 37 Path jobJarPath = new Path(jobConf.get(MRJobConfig.JAR)); 38 LocalResource rc = createApplicationResource(defaultFileContext, 39 jobJarPath, 40 LocalResourceType.PATTERN); 41 String pattern = conf.getPattern(JobContext.JAR_UNPACK_PATTERN, 42 JobConf.UNPACK_JAR_PATTERN_DEFAULT).pattern(); 43 rc.setPattern(pattern); 44 localResources.put(MRJobConfig.JOB_JAR, rc); 45 } else { 46 // Job jar may be null. For e.g, for pipes, the job jar is the hadoop 47 // mapreduce jar itself which is already on the classpath. 48 LOG.info("Job jar is not present. " 49 + "Not adding any jar to the list of resources."); 50 } 51 52 // TODO gross hack 53 for (String s : new String[] { 54 MRJobConfig.JOB_SPLIT, 55 MRJobConfig.JOB_SPLIT_METAINFO }) { 56 localResources.put( 57 MRJobConfig.JOB_SUBMIT_DIR + "/" + s, 58 createApplicationResource(defaultFileContext, 59 new Path(jobSubmitDir, s), LocalResourceType.FILE)); 60 } 61 62 // Setup security tokens 63 DataOutputBuffer dob = new DataOutputBuffer(); 64 ts.writeTokenStorageToStream(dob); 65 ByteBuffer securityTokens = ByteBuffer.wrap(dob.getData(), 0, dob.getLength()); 66 67 // Setup the command to run the AM 68 List
vargs = new ArrayList
(8); 69 vargs.add(Environment.JAVA_HOME.$() + "/bin/java"); 70 71 // TODO: why do we use 'conf' some places and 'jobConf' others? 72 long logSize = TaskLog.getTaskLogLength(new JobConf(conf)); 73 String logLevel = jobConf.get( 74 MRJobConfig.MR_AM_LOG_LEVEL, MRJobConfig.DEFAULT_MR_AM_LOG_LEVEL); 75 MRApps.addLog4jSystemProperties(logLevel, logSize, vargs); 76 77 // Check for Java Lib Path usage in MAP and REDUCE configs 78 warnForJavaLibPath(conf.get(MRJobConfig.MAP_JAVA_OPTS,""), "map", 79 MRJobConfig.MAP_JAVA_OPTS, MRJobConfig.MAP_ENV); 80 warnForJavaLibPath(conf.get(MRJobConfig.MAPRED_MAP_ADMIN_JAVA_OPTS,""), "map", 81 MRJobConfig.MAPRED_MAP_ADMIN_JAVA_OPTS, MRJobConfig.MAPRED_ADMIN_USER_ENV); 82 warnForJavaLibPath(conf.get(MRJobConfig.REDUCE_JAVA_OPTS,""), "reduce", 83 MRJobConfig.REDUCE_JAVA_OPTS, MRJobConfig.REDUCE_ENV); 84 warnForJavaLibPath(conf.get(MRJobConfig.MAPRED_REDUCE_ADMIN_JAVA_OPTS,""), "reduce", 85 MRJobConfig.MAPRED_REDUCE_ADMIN_JAVA_OPTS, MRJobConfig.MAPRED_ADMIN_USER_ENV); 86 87 // Add AM admin command opts before user command opts 88 // so that it can be overridden by user 89 String mrAppMasterAdminOptions = conf.get(MRJobConfig.MR_AM_ADMIN_COMMAND_OPTS, 90 MRJobConfig.DEFAULT_MR_AM_ADMIN_COMMAND_OPTS); 91 warnForJavaLibPath(mrAppMasterAdminOptions, "app master", 92 MRJobConfig.MR_AM_ADMIN_COMMAND_OPTS, MRJobConfig.MR_AM_ADMIN_USER_ENV); 93 vargs.add(mrAppMasterAdminOptions); 94 95 // Add AM user command opts 96 String mrAppMasterUserOptions = conf.get(MRJobConfig.MR_AM_COMMAND_OPTS, 97 MRJobConfig.DEFAULT_MR_AM_COMMAND_OPTS); 98 warnForJavaLibPath(mrAppMasterUserOptions, "app master", 99 MRJobConfig.MR_AM_COMMAND_OPTS, MRJobConfig.MR_AM_ENV);100 vargs.add(mrAppMasterUserOptions);101 102 vargs.add(MRJobConfig.APPLICATION_MASTER_CLASS);103 vargs.add("1>" + ApplicationConstants.LOG_DIR_EXPANSION_VAR +104 Path.SEPARATOR + ApplicationConstants.STDOUT);105 vargs.add("2>" + ApplicationConstants.LOG_DIR_EXPANSION_VAR +106 Path.SEPARATOR + ApplicationConstants.STDERR);107 108 109 Vector
vargsFinal = new Vector
(8);110 // Final command111 StringBuilder mergedCommand = new StringBuilder();112 for (CharSequence str : vargs) {113 mergedCommand.append(str).append(" ");114 }115 vargsFinal.add(mergedCommand.toString());116 117 LOG.debug("Command to launch container for ApplicationMaster is : "118 + mergedCommand);119 120 // Setup the CLASSPATH in environment121 // i.e. add { Hadoop jars, job jar, CWD } to classpath.122 Map
environment = new HashMap
();123 MRApps.setClasspath(environment, conf);124 125 // Setup the environment variables for Admin first126 MRApps.setEnvFromInputString(environment, 127 conf.get(MRJobConfig.MR_AM_ADMIN_USER_ENV));128 // Setup the environment variables (LD_LIBRARY_PATH, etc)129 MRApps.setEnvFromInputString(environment, 130 conf.get(MRJobConfig.MR_AM_ENV));131 132 // Parse distributed cache133 MRApps.setupDistributedCache(jobConf, localResources);134 135 Map
acls136 = new HashMap
(2);137 acls.put(ApplicationAccessType.VIEW_APP, jobConf.get(138 MRJobConfig.JOB_ACL_VIEW_JOB, MRJobConfig.DEFAULT_JOB_ACL_VIEW_JOB));139 acls.put(ApplicationAccessType.MODIFY_APP, jobConf.get(140 MRJobConfig.JOB_ACL_MODIFY_JOB,141 MRJobConfig.DEFAULT_JOB_ACL_MODIFY_JOB));142 143 // Setup ContainerLaunchContext for AM container144 ContainerLaunchContext amContainer =145 ContainerLaunchContext.newInstance(localResources, environment,146 vargsFinal, null, securityTokens, acls);147 148 149 // Set up the ApplicationSubmissionContext150 ApplicationSubmissionContext appContext =151 recordFactory.newRecordInstance(ApplicationSubmissionContext.class);152 appContext.setApplicationId(applicationId); // ApplicationId153 appContext.setQueue( // Queue name154 jobConf.get(JobContext.QUEUE_NAME,155 YarnConfiguration.DEFAULT_QUEUE_NAME));156 appContext.setApplicationName( // Job name157 jobConf.get(JobContext.JOB_NAME,158 YarnConfiguration.DEFAULT_APPLICATION_NAME));159 appContext.setCancelTokensWhenComplete(160 conf.getBoolean(MRJobConfig.JOB_CANCEL_DELEGATION_TOKEN, true));161 appContext.setAMContainerSpec(amContainer); // AM Container162 appContext.setMaxAppAttempts(163 conf.getInt(MRJobConfig.MR_AM_MAX_ATTEMPTS,164 MRJobConfig.DEFAULT_MR_AM_MAX_ATTEMPTS));165 appContext.setResource(capability);166 appContext.setApplicationType(MRJobConfig.MR_APPLICATION_TYPE);167 return appContext;168 }

其中

ApplicationId applicationId = resMgrDelegate.getApplicationId();

就对应上图中的第一步,向ResourceManager申请ID;

其中包括了内存、CPU的分配,资源(程序、配置等)路径的配置,启动AppMaster的命令,检查java环境等等;

这些就对应上图中的第二步,初始化AM的配置;

而submitJob()方法中最重要语句之二就是

ApplicationId applicationId =          resMgrDelegate.submitApplication(appContext);

它用于将AM提交到RM,对应于上图中的第三步;

submitApplication()方法是由YarnClientImpl.java实现的,即:

1   @Override 2   public ApplicationId 3       submitApplication(ApplicationSubmissionContext appContext) 4           throws YarnException, IOException { 5     ApplicationId applicationId = appContext.getApplicationId(); 6     appContext.setApplicationId(applicationId); 7     SubmitApplicationRequest request = 8         Records.newRecord(SubmitApplicationRequest.class); 9     request.setApplicationSubmissionContext(appContext);10     rmClient.submitApplication(request);11 12     int pollCount = 0;13     while (true) {14       YarnApplicationState state =15           getApplicationReport(applicationId).getYarnApplicationState();16       if (!state.equals(YarnApplicationState.NEW) &&17           !state.equals(YarnApplicationState.NEW_SAVING)) {18         break;19       }20       // Notify the client through the log every 10 poll, in case the client21       // is blocked here too long.22       if (++pollCount % 10 == 0) {23         LOG.info("Application submission is not finished, " +24             "submitted application " + applicationId +25             " is still in " + state);26       }27       try {28         Thread.sleep(statePollIntervalMillis);29       } catch (InterruptedException ie) {30       }31     }32 33 34     LOG.info("Submitted application " + applicationId + " to ResourceManager"35         + " at " + rmAddress);36     return applicationId;37   }

这个方法主要构造了一个请求,并将这个请求调用相关协议发出,即:

rmClient.submitApplication(request);

客户端类结构:


到这里客户端除了查询监控基本上没有什么动作了,之后就按照上面的协议通信图来进行了。

由于YARN的各种协议、接口、封装等,就简单从协议层面分析大概流程走向

(在查看协议代码的时候经常会看到google的字样,有点老祖宗的感觉)

客户端和RM之间的协议类是ApplicationClientProtocol

客户端和RM之间的通信动作包括:

1.获取应用ID

public abstract void getNewApplication(          com.google.protobuf.RpcController controller,          org.apache.hadoop.yarn.proto.YarnServiceProtos.GetNewApplicationRequestProto request,          com.google.protobuf.RpcCallback
done);

2.把应用提交到RM上

public abstract void submitApplication(          com.google.protobuf.RpcController controller,          org.apache.hadoop.yarn.proto.YarnServiceProtos.SubmitApplicationRequestProto request,          com.google.protobuf.RpcCallback
done);

具体步骤:

  1. 客户端通过getNewApplication方法从RM上获取应用ID;

  2. 客户端将应用相关的运行配置封装到ApplicationSubmissionContext中,通过submitApplication方法将应用提交到RM上;

  3. RM根据ApplicationSubmissionContext上封装的内容启动AM;

  4. 客户端通过AM或RM获取应用的运行状态,并控制应用的运行过程。

在获取应用程序ID后,客户端封装应用相关的配置到ApplicationSubmissionContext中,通过submitApplication方法提交到RM上。

ApplicationSubmissionContext主要包括如下几个部分:

  • applicationId: 通过getNewApplication获取的应用ID;

  • applicationName: 应用名称,将显示在YARN的web界面上;

  • applicationType: 应用类型,默认为”YARN”;

  • priority: 应用优先级,数值越小,优先级越高;

  • queue: 应用所属队列,不同应用可以属于不同的队列,使用不同的调度算法;

  • unmanagedAM: 布尔类型,表示AM是否由客户端启动(AM既可以运行在YARN平台之上,也可以运行在YARN平台之外。运行在YARN平台之上的AM通过RM启动,其运行所需的资源受YARN控制);

  • cancelTokensWhenComplete: 应用完成后,是否取消安全令牌;

  • maxAppAttempts: AM启动失败后,最大的尝试重启次数;

  • resource: 启动AM所需的资源(虚拟CPU数/内存),虚拟CPU核数是一个归一化的值;

  • amContainerSpec: 启动AM容器的上下文,主要包括如下内容:

  • tokens: AM所持有的安全令牌;

  • serviceData: 应用私有的数据,是一个Map,键为数据名,值为数据的二进制块;

  • environment: AM使用的环境变量;

  • commands: 启动AM的命令列表;

  • applicationACLs:应程序访问控制列表;

  • localResource: AM启动需要的本地资源列表,主要是一些外部文件、压缩包等。


之后就是RM创建AM,并执行某些动作了

AM的主要功能是按照业务需求,从RM处申请资源,并利用这些资源完成业务逻辑。因此,AM既需要与RM通信,又需要与NM通信。这里涉及两个协议,分别是AM-RM协议(ApplicationMasterProtocol)和AM-NM协议(ContainerManagementProtocol)

首先是AM-RM

AM-RM之间使用ApplicationMasterProtocol协议进行通信,该协议提供如下几个方法:

  //向RM注册AM      public abstract void registerApplicationMaster(        com.google.protobuf.RpcController controller,        org.apache.hadoop.yarn.proto.YarnServiceProtos.RegisterApplicationMasterRequestProto request,        com.google.protobuf.RpcCallback
done);
   //告知RM,应用已结束 public abstract void finishApplicationMaster(        com.google.protobuf.RpcController controller,        org.apache.hadoop.yarn.proto.YarnServiceProtos.FinishApplicationMasterRequestProto request,        com.google.protobuf.RpcCallback
done);
//向RM申请/归还资源,维持心跳   public abstract void allocate(        com.google.protobuf.RpcController controller,        org.apache.hadoop.yarn.proto.YarnServiceProtos.AllocateRequestProto request,        com.google.protobuf.RpcCallback
done);

客户端向RM提交应用后,RM会根据提交的信息,分配一定的资源来启动AM,AM启动后调用ApplicationMasterProtocol协议的registerApplicationMaster方法主动向RM注册。完成注册后,AM通过ApplicationMasterProtocol协议的allocate方法向RM申请运行任务的资源,获取资源后,通过ContainerManagementProtocol在NM上启动资源容器,完成任务。应用完成后,AM通过ApplicationMasterProtocol协议的finishApplicationMaster方法向RM汇报应用的最终状态,并注销AM。

需要注意的是,ApplicationMasterProtocol#allocate()方法还兼顾维持AM-RM心跳的作用,因此,即便应用运行过程中有一段时间无需申请任何资源,AM都需要周期性的调用相应该方法,以避免触发RM的容错机制。

其次是AM-NM

AM通过ContainerManagementProtocol协议与NM交互,包括3个方面的功能:启动容器、查询容器状态、停止容器

//启动容器      public abstract void startContainers(          com.google.protobuf.RpcController controller,          org.apache.hadoop.yarn.proto.YarnServiceProtos.StartContainersRequestProto request,          com.google.protobuf.RpcCallback
done);
//查询容器状态      public abstract void getContainerStatuses(          com.google.protobuf.RpcController controller,          org.apache.hadoop.yarn.proto.YarnServiceProtos.GetContainerStatusesRequestProto request,          com.google.protobuf.RpcCallback
done);
//停止容器      public abstract void stopContainers(          com.google.protobuf.RpcController controller,          org.apache.hadoop.yarn.proto.YarnServiceProtos.StopContainersRequestProto request,          com.google.protobuf.RpcCallback
done);

AM通过ContainerManagementProtocol# startContainers()方法启动一个NM上的容器,AM通过该接口向NM提供启动容器的必要配置,包括分配到的资源、安全令牌、启动容器的环境变量和命令等,这些信息都被封装在StartContainersRequest中。NM收到请求后,会启动相应的容器,并返回启动成功的容器列表和失败的容器列表,同时还返回其上相应的辅助服务元数据


至此,就剩下NM上container的MAP和REDUCE过程了。


本文图文大量摘自:

只为学习,无意侵权


突然发现我能看懂董的博客上的绝大部分文章了


 

转载于:https://www.cnblogs.com/admln/p/hadoop2-work-excute-yarn.html

你可能感兴趣的文章
练习PYTHON之GEVENT
查看>>
Web持久化存储Web SQL、Local Storage、Cookies(常用)
查看>>
node js 常用模块
查看>>
Libsvm和Liblinear的使用经验谈
查看>>
php生成curl命令行
查看>>
PHP中的数据库四、mongodb
查看>>
品读吴军"之"系列
查看>>
框架学习笔记:Unity3D的MVC框架——StrangeIoC
查看>>
Android NumberPicker 修改分割线颜色和高度及字体颜色大小
查看>>
树莓派键盘布局修正
查看>>
Android之Http通信——3.Android HTTP请求方式:HttpURLConnection
查看>>
hdu 5071 Chat(模拟)
查看>>
【转】 测试人员的职业规划 --整理标注
查看>>
C++智能指针--weak_ptr
查看>>
struts2的坑以及tomcat的一些常识
查看>>
HDURevenge of Segment Tree(第二长的递增子序列)
查看>>
Json数组操作小记 及 JSON对象和字符串之间的相互转换
查看>>
Linux服务器时间相关命令记录
查看>>
常量,字段,构造方法 调试 ms 源代码 一个C#二维码图片识别的Demo 近期ASP.NET问题汇总及对应的解决办法 c# chart控件柱状图,改变柱子宽度 使用C#创建Windows服...
查看>>
视频支持拖动进度条播放的实现(基于nginx)
查看>>